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Nonlinear response of a dipolar system with rotational diffusion to a rotating field
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The rotational diffusion equation for a dipole in the presence of a rotating field is solved by expansion of the
orientational distribution function in terms of spherical harmonics. For the stationary solution, the distribution
function rotates bodily in angular space. The magnitude of the average dipole moment and the lag angle are
studied as functions of field strength and frequency. A comparison is made with the nonlinear response
calculated from approximate macroscopic relaxation equations, proposed by Shibmizksp. Teor. Fiz61,
2611(1972 [Sov. Phys. JETB4, 1291(1972]] and by Martsenyulet al.[Zh. Eksp. Teor. Fiz65, 834(1973
[Sov. Phys. JETR88, 413 (1974]]. Shliomis found that for sufficiently high field, the lag angle and the
absorption are multivalued functions of frequency. This is not the case for the exact solution of the rotational
diffusion equation presented here. The response of a macroscopic system of interacting dipoles is calculated in
a mean-field approximation for a spherical sample.
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[. INTRODUCTION space at the same frequency. The stationary distribution is
expanded in spherical harmonics, and the equations for the
It was found experimentally by Moskowitz and Rosens-coefficients are solved numerically after truncation at suffi-
weig [1] that a rotating magnetic field acting on a ferrofluid ciéntly high order. The expansion converges rapidly, even for
can set the fluid into rotational motion. It was later estab-Strong field. Mathematically the solution is simpler than for
lished by Rosensweigt al.[2] that the motion of the fluid as &7 0scillating field 7—11], where a double expansion in Leg-
a whole is dominated by surface effects, and that the sense §gg{§aﬁ§% nggg:swmdthhea%n:;gsscgnpign:;;)s(aiﬁ)qnu'é(e;a'a t\i/g?]
rotational motion depends on the curvature of the meniscus; .
e : A . of Martsenyuket al. [6]. We discuss entropy, free energy
A ferrofluid filling its container and satisfying stick boundar i RSO y
conditions will ?emain at rest. and onlfgll tr?e magnetizatignand dissipation for both the Smoluchowski equation and the

: . T . macroscopic relaxation equation.
will rotate, lagging the magnetic field by a certain angle. Finally, we study the behavior of the magnetization of

In the following, we do not consider macroscopic motion, jnteracting dipoles filling a closed spherical container uni-
but rather the rotation of magnetization in a volume elemenform|y_ With the assumption that the correlations between
in which the fluid is at rest. We study the dependence othe dipoles can be neglected, and that the local field acting
amplitude and lag angle on field strength and frequency for @n a dipole can be approximated by the Lorentz local field, it
dilute suspension on the basis of the Smoluchowski equatiofvliows that the behavior of magnetization and correspond-
describing the rotational diffusion of individual dipoles. ing torque is identical to that for a dilute system. It would be

The rotation of magnetization in a rotating magnetic fieldof interest to study this geometry experimentally or in com-
was investigated by Shliom{$,4] on the basis of a macro- puter simulation also for dense suspensions, particularly in
scopic relaxation equation for the magnetization, involving aview of Shliomis’ prediction of multivalued behavior. An
single relaxation timg5]. He showed that the lag angle and experiment of this type was suggested earlier by Hedj2k
the torque exerted on a particle are multivalued functions of All our considerations apply equally to electric and mag-
frequency, if the field is sufficiently strong. We show in the netic dipoles. For definiteness, we use language and notation
following that this is not the case for the solution of the corresponding to the magnetic case.

Smoluchowski equation. Both lag angle and torque are
single-valued functions of frequency at any field strength. Il. DIPOLES IN ROTATING FIELD

This suggests that the multivalued behavior found by Shlio- \We consider a system of magnetic dipoles of dipole mo-
mis is a peculiarity of his relaxation equation. Experimentalment u=mu, whereu is a unit vector, driven by an applied
study of the behavior of the magnetization as a function ofotating magnetic field. We assume that the system has
frequency would provide a critical test. We find that a secondeached a stationary state in which in the volume element
macroscopic relaxation equation, proposed by Martsenyukinder consideration, the Maxwell magnetic field, and the
et al. [6], approximates the behavior found from the Smolu-magnetization rotate with frequenayin the x-y plane. The
chowski equation quite well, and does not lead to multival-x,y components of the fielti(t) are given by

ued behavior. )

Our solution of the Smoluchowski equation is based on Hy(t)=H coswt, H,=Hsinwt. @)
the observation that in a rotating magnetic field the stationar

. ) S . s ¥he magnetizatiorM(t) rotates at the same frequency, but
orientational distribution function rotates bodily in angular

lags behind the field. Thus, putting(t) =nmkF(t), wheren
is the number density, we may write

*Electronic address: ufelder@physik.rwth-aachen.de Fy(t)=F codwt—a), Fy=Fsinot—a). (2
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Both the amplitude= and the lag angler depend on the
magnetic field strengtid and the frequencyw. The mean
torque exerted by the field on a dipole is in théirection,
and in dimensionless units has the magnitude

T=F¢sina, 3
with dimensionless fieldé=mH/kT,, where k is Boltz-
mann’s constant andl, is the temperature.

We analyze the situation, in particular, for a dilute system
of dipoles subject to rotational Brownian motion due to in-

teraction with a heat bath at temperatilige The distribution
function of orientationsf(u,t) is assumed to satisfy the
Smoluchowski equatiofl3]

Z—IZDRL-[Lf+,8(Ls)f], 4

whereDg, is the rotational diffusion coefficient, is the ro-
tation operator

L=uX

2’ 5)

and B8=1/kT,. The potential energy of a dipole with direc-
tion u=(6,¢) in the fieldH(t) is
g(u,t)=—mHsin 6 cog ¢ — wt). (6)

It is natural to assume that the stationary solution of @j.
has the form

flut)=1(6,9), ()

with phase angle

¢=¢— ot 8

We find that the stationary solutidif 6, ¢) satisfies the equa-
tion in two variables,

1 a( _ aaf)+ 1 °f
— —|sind—|+——
0] sirt a¢?

of
+¢| 2 sinf cosg f—cosd cos¢£

sing of

+Si_n€£’ 9

with relaxation timergr=1/Dg. By expansion in spherical
harmonicq 14], we can write the solution

o €
f0.9=2 2 CmY7(0,9). (10
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8 )
Fy(t)= \/?[— Cj,coswt—Cj;sinwt],

871- 4 ’ H

whereCy,,C], are the real and imaginary parts of the com-
plex coefficientC,;. As a consequence

11)

F=1\/%1Cul, a=arctan—. (12)
3 Cn
Hence the mean torque is given by
8m
T(¢0)=— ?gcll' (13

We solve Eq(9) by noting that the last term on the right-
hand side can be expressed as the action of a linear operator
V on the distribution functiorf( 9, ¢) of the form

J
2 sinf cos¢—cose L+ sing sin ¢£} f. (14

Using known properties of the spherical harmonjits], we
find that the action of the operatdf on the spherical har-
monic Y} is given by

Vi=¢

1
VYE= 5 E0(€— D)oY = (= DY P L+ (€

-1 +1
F2)Weiim-1Yeri—(€+2)vpi1me1Yoea ],

(15

with coefficients

B (€+m)(£+m—1)
Vem= N 2¢+1)(20—1)

Wem=V¢,—m- (16)

Substituting Eq(10) into Eqg.(9), we find therefore that the
coefficients{C,,,} satisfy the set of coupled equations,

) 1
iMoTrRCim=C¢(€+1)Cop— §§[€U€+l,m+lcf’+l,m+l

Wi 1m1Crrimo 1T+ DWenCr1mia
—(€+1)Ungg,1’m,1]. (17)

By normalization of the distribution function, the coefficient
Cqo IS given by

1
Jar

The remaining coefficient€,,, are determined from the set
of linear equationg17). The equations can be solved by

Coo= (18

The x,y components of the magnetization are then given bytruncation at sufficiently large. For given¢ and w, one
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finds that the coefficient€,, tend to zero rapidly with in-

PHYSICAL REVIEW 66, 051503 (2002

It turns out that Eq(24) provides a good approximation at

creasingf, so that it is not difficult to achieve convergence. high frequency. At high frequency, the field is weak effec-

lIl. LIMITING CASES AND MACROSCOPIC
RELAXATION EQUATION

It is of interest to compare the exact solution obtained
above with the approximate solutions found in the limits of

tively, since the dipoles cannot follow the field.
In a constant field¢, the time-independent equilibrium
distribution is

fog(X)=eXPEX)IZ(£). 27)

low frequency and weak field. We shall also compare thelhe corresponding equilibrium magnetization is

exact solution for the magnetization with that obtained in the

so-called effective field approximatidié,16].

In the limit of low frequency, the solution will be well
approximated by a quasiequilibrium solution, correspondin
to the thermal equilibrium in the instantaneous field. We call
this the adiabatic approximation. The corresponding distribu-

tion function is

faa(6,¢)=exd &sinbcosp]/Z(£), (19
with normalization factor
41 sinh¢
Z(&)= T (20
The corresponding magnetization components are
Fy(t)=L(§)coswt, F (t)=L({)sinwt, (21
whereL (¢) is the Langevin function
1
L(&)=cothé— . (22

3

Thus for the adiabatic solution, the amplituffetakes the

equilibrium valuel (£), as if the field were static, and the lag

angle« vanishes.

For weak field, Eq(9) can be solved by perturbation ex-

pansion in powers of. Thus we put

where the subscript denotes the ordeé.ifFrom Eq.(9), one
finds

. 1
0T 4,
1 .
f1(0,¢)= Eg COSaq Sinfcog ¢+ ay), (24
with phase angle
= @ 25
a,=arcta 2—DR . (25
The corresponding amplitude is to first order iné,
1
FW=§§COSa1. (26)

Fe(§)=L(&). (28

In the effective field approximatiof6,16], it is assumed that

Yhe distribution function has the equilibrium form

fe( 6,0, t) =exgu- &(t)1/Z(&) (29

at all times with field,(t) in the direction of the magneti-
zationM(t) with magnitudeé.(t) given byF=L(&.), as in

Eq. (28). The magnetization itself is assumed to follow from
a macroscopic relaxation equation. The latter is derived as a
moment equation of Eq4), on the assumption that the dis-
tribution has the form(29). We denote the approximate re-
duced magnetization blyy,(t) and the corresponding effec-
tive field by &p(t). Martsenyuk et al. [6] derived the
macroscopic equation

dFpy L(&em) 3L(éem) —em
TR Dr Zm(fem—fwr TgeM
X (X &em) |- (30)

As we shall see, the macroscopic relaxation equation pro-
vides quite a good approximation to the actual magnetiza-
tion.

By substitution of Eqs(1) and(2), with F replaced byF,
anda replaced by, , into Eq.(30) one finds that the equa-
tion is satisfied provided.y, and «), satisfy the pair of
equations

Eem=ECOSary,

L(&em)
tanay, wTRgeM_ LEar)’ (31
It is easily checked that these equations are consistent with
the behavior found above for low frequency and for weak
field. It is of interest to compare the behavior predicted by
Eq. (31) with that found from Shliomis’ relaxation equation
[3,4]. We denote the corresponding reduced magnetization as
Fs(t). Shliomis’ relaxation equation reads in present nota-
tion as

dFg L(§)
i~ QesXFs=2Dgr Fs— Tg , (32
with angular velocity vecto£,s given by
Q,s=DRr7s, (33
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FIG. 1. Plot of tamxg( ¢, w), following from Shliomis’ equations
(34 and (35, as a function of wrg for values
{0+,2,5,8,12,15 of Pg(¢£) (from left to righy.

with mean torqueZg=Fg(t) X &(t) in dimensionless units.
The solution is of the form2) with amplitudeFg and lag
angleag given by the pair of equations

Fs=L(§)cosas,

1
tanaszz(wTR_ngsinas). (34)

With the abbreviationsxg=tanag and Ps=3£L(€), this
leads to the cubic equation

3 1 2 g
XS__wTRXS+(PS+ 1)XS_§(DTR:0- (35)

2

In Fig. 1, we plot tanrg( £, w) as a function ot 7 for the
values {0+,2,5,8,12,16 of Pg(¢). This corresponds ap-
proximately to the value§0+,5,11,17,25,3Bof the field .

In Fig. 2, we plot the ratiocZg(¢,w)/w7g as a function of
wTg for the same values d?5(£). These functions are mul-
tivalued for Pg(£)>8. In Fig. 3, we plot tam(¢,w) and

tanay(é,w) as functions ofwrg for the same values of
Ps(€) as previously.
Té,0w)wmg and 7y (€, w)/ wtg. It is evident from Figs. 3

In Fig. 4, we plot the ratios
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tan o

WTR

FIG. 3. Plot of the exact values of tarfé,w) (solid curves,
and of taney (¢, w), following from Eq. (31), (dashed curvgsas
functions ofw 7 for values{0+,2,5,8,12,16 of P(¢) (from left to
right).

It is also of interest to compare the exact distribution with
the one assumed in the effective field approximation. The
distibution is given by a peak in thed{¢) plane centered
aboutf= /2 and¢o= — a(¢,w). In Fig. 5, we compare the
function f(m/2,$) with the function fqy(7/2,) corre-
sponding to the field {gu(é,0) for =20 and o
=18.689Dg. In Fig. 6, we compare the functiof( 8, ¢q)
with the functionfy(6,¢,) for the same values ofé(w).
The plot in Fig. 5 shows that the distribution is distorted
considerably in thep direction compared with the distribu-
tion of the effective field approximation.

IV. FIRST HARMONIC RESPONSE, ABSORPTION,
AND TORQUE

A quantity of prime interest in the nonlinear response of
the magnetization is the amplitude of the first harmonic, de-
fined by

P(é,w)=¢w fOT[FX(t)COSwt+ Fy(t)sinwt]dt. (36)

From Eq.(2), we find

and 4 that these functions are single valued. Figure 3 shows
that the values of tan(&,w) are given only approximately

by the macroscopic equation. It is shown in Fig. 4 that the
values of the torque are reproduced much better by the ag=rom Eq.(25) and(26) we find for weak field
proximate equation.

P(¢,w)=2w&F cosa. (37)

1
yr
o 0.8
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0.2
0
0 0 10 20 30 40
0 5 10 15 20 WTR

WTR
FIG. 4. Plot of the exact values @f(¢,w)/ w7k (solid curves,

FIG. 2. Plot of the ratidZg(¢,w)/ w7, following from Shlio- and of 7y (¢, w)/ g, following from Eq.(31), (dashed curvegsas

mis’ equations(34) and (35), as a function ofwrg for values
{2,5,8,12,16 of P4(&) (from left to right.

functions of w7y for values{2,5,8,12,1% of Pg(¢) (from left to
right).
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FIG. 5. Plot of the stationary distribution functidii=/2,¢) in
the rotating frame fo¢=20 andw=18.68Dy (solid curve, com-
pared with the distributiorfy(7/2,) of the effective field ap-
proximation(dashed curve

b B 2 2 o2 _271' ) 38
w(é,w)= 77 cosa;=—>-¢ 4+—w27%- (38

In the zero frequency limit, one finds from E@1)
P(§,0)=2mEL(§). (39

This differs significantly from the expression for oscillating

field [11]. For small&, the expression reduces B,(£,0)
=27£2/3, twice that for an oscillating field.

A second quantity of interest is the absorption, defined a

the work done by the field in a periot=2#/w. In dimen-
sionless units,

dFs t+dFy‘ t|dt 40
dtCOSw dtsmw . (40

Q(§,w)=§f0T

It follows from Eg.(2) that the exact absorption is
Q(¢,w)=2méF sina. (41)

To second order i, the absorption is

_2772_ _277'22er
Qw(g,w)—?g smalcoml—Tg 4+—w27§.
(42)
1.4
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FIG. 6. Plot of the stationary distribution functidiié, ¢) for
¢o=—a(&,0) in the rotating frame fo=20 andw=18.68Dy
(solid curve, compared with the distributiorfey(6,dom) for
dom=—au(é,0) of the effective field approximatioridashed
curve.
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3
loggwTr

FIG. 7. Plot of the reduced functionB(¢,w)/P(£,0) and
Q(¢,w)/P(£,0) as functions of log, w7k for £=20 (solid curves,
compared with the quantities P,(¢,0)/P,(£,0) and
Qu(&,w)/P,(£,0) valid in the weak field limitdotted curves as
well as with the quantitie® (&, w)/P(£,0) andQy (&, w)/P(£,0)
calculated from the effective field approximatidong dashes

We can compare with the absorpti@ds(£,w) calculated
from the approximate magnetizatiéiy(t), and similarly the
absorptionQy, (¢,w) calculated fromF y(t).

It follows from Egs. (3) and (41) that absorption and
torque are related by

Q=2~wT. (43)

Th other words, the work done per second equals Note
that here the frequenay, rather than the “angular velocity”
Q,=DR7, occurs. It has been sugges{dd] in connection
with Shliomis’ relaxation equation to caf),7 the coherent
rate of dissipation, and the remainder (2 ,) 7 the incoher-
ent rate of dissipation, but in the framework of the Smolu-
chowski equation there is no point in doing so.

The behavior of the quantitieB(¢,w) and Q(&,w) as
functions of w is qualitatively similar to that for oscillating
field [11]. The absorptiorQ,, (&, ) calculated from the lin-
earized theory shows a resonance when plotted as a function
of log,q w T With maximum atw,,,,= 2/7, corresponding to
Debye relaxation timerp=1/2Dg. In Fig. 7, we plot the
reduced first harmonic respon&¥ ¢, w)/P(£,0) as a func-
tion of log,gw7g for £=20, as well as the reduced absorp-
tion Q(¢&,w)/P(£,0). We compare with the quantities
Pu(& 0)/Py(£,0) andQ,, (& w)/P,(&,0) valid in the weak
field limit. The latter are related by Kramers-Kronig rela-
tions. The plot shows a significant qualitative difference for
strong field. We also plot the corresponding quantities calcu-
lated from the macroscopic equation. The approximate
theory performs quite well. At the maximum ab,,
=18.86Dp, the exact value iQ(20,w,,) =97.044, whereas
the approximate value ®y,(20,w,)=100.221. At high fre-
quency both curves tend to the expression for weak field
(4.7). This expression has its maximur®,,(20,2Dg)
=418.88 atw,,=2Dg.

V. ENTROPY, FREE ENERGY, AND DISSIPATION

The entropy per particle in a state characterized by distri-
butionf(u,t) can be calculated from Boltzmann’s expression

0515083-5
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For a distribution of the exponential for(@9), a so-called

§=-— kf f(u,t)inf(u,t)du. (44 edistribution, the free energy becomes a functiofiglF ] of

the magnetizatioifr, or alternatively of the effective field,

The corresponding free energy per particle is related toF by Eq.(28). By substitution of Eq(29) into Eq.

(44), one finds for the corresponding entropy
F=U-TyS, (45

Se(F)=kInZ(&e) —k & F. (52)

wherel/ is the mean potential energy.
In the stationary state, the distribution function rotatesHence the free energy is

with constant angular velocitw. Hence in the stationary
state the free energy, the mean potential energy, and the en- BFo(F,t)=(&—&t))-F—InZ(&,). (53
tropy are constant. The distribution function differs from the .
equilibrium form, and there is a constant rate of dissipation\Ve see by use of the relation
In the stationary state, the mean potential energy is

alnZ(&)

F=—(1F, (54)

U= —KTyéF cosa. (46) dé&e

By use of Eq.(37), we find the relation equivalent to Eq(28), that &, is the thermodynamic force
conjugate toF,
kT

U=~ 5_P({,0). (47) (o 1 9S4(F) -

¢k F

The entropy must be calculated from E44) after substitu-
tion of Eq. (10). The entropyS.(F) depends only on the magnitude and
The free energy is a functionat [ ] of the distribution  S,(0)=k In 4. From Egs.(52) and(53) we find
function. For general distributiof(u,t), its rate of change is
IBF
dF af de S &(="" (56)
W:J [s(u,t)+kTOInf]Edu+JEfdu. (49
If at time t the distribution has the exponential form as-
Substituting Eq(4) and performing an integration by parts, sumed in Eq(29), then the rate of change of the magnetiza-

we transform this to tion at that time is
dF d 2 dF _f afed :
a——kToDRf @(Inf—g(t)-u) f(u,t)du at e— uat u. (57

—mF(t)- ?j_l;' (49) Substituting from Eq(4), one finds

In the stationary state, the left-hand side vanishes, and the at
second term on the right is independent of time. Hence the

first term on the right also does not depend on time, and w
find the relation

= Dr(&(1) — &) (1-uu)g. (58)

%y use of Eq.(56), we can write

dFe
. w —_— = — .
Dé,0)=5-Q(£), (50) at| - M 59
whereD(&,w) is the rate of dissipation given by with mobility tensor
5 2 NF) = (F)FF+y.(F)(1-FF), (60)
D(g’w):DRJ ﬂ(ln f=¢singcosg) | f(u)du’, with Onsager coefficients
(51)
. . R . i . L(fe(F)) §e(F)_L(§e(F))
whereu’ = (6, ¢) is the direction of the dipole in the rotating 7H(F):2DRW! Y (F)= DRT
frame. Clearly the integrand is positive. Hence the rate of © € (61)

dissipation is positive. The relatiai®0) shows that the rate
of dissipation is calculated conveniently from the absorptionOne obtains the macroscopic relaxation equation(8@). by
i.e., from the work done on the system. postulating that
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dFy IFs sample placed in a uniform applied rotating field
g = "Fw)BE (62)

M Ho(t)=H[ & coswt+g, sinwt]. (67)
holds at all times. The above derivation throws new light on

the macroscopic equatiad30) of Martsenyuket al. [6], and The field induces a magnetizatidf(t) and a Maxwell field
shows how this should be viewed in the framework of irre-H(t), which are uniform throughout the sample. 1t follows

versible thermodynamics. The inverse expressions fof©mM Maxwell's equations of magnetostatics that the Max-

n(F)=1/y(F) and 7, (F)=1/y, (F) were derived by well field inside the sphere is given by
Martsenyuket al.[6] in linear response theory. The mobility 4
tensory(F) is symmetric, positive definite, and has trace H(t)=Ho(t)— %M(t), (68)

y|(F)+2y,(F)=2Dg. (63) _ o _
where the last term is the demagnetizing field, in Gaussian
At vanishing magnetization, both coefficienig(0),v, (0) units. The distribution function will rotate uniformly about
equal(Dg. The longitudinal coefficient (F) decreases to the z axis. Quite generally, it can be assumed to satisfy the
zero with increasing magnetization. At the same time theequation[19,20
transverse coefficient, (F) increases to its maximum value
Dg. Thus at vanishing magnetization the mobility tensor is
isotropic, and it becomes more and more anisotropic with E:DRL'[LHE(LS'OC”]'
increasing magnetization.
Multiplying Eq. (60) by &(t) — &,(t), we obtain by use of where g/o.(t)=—mu-H,..(t) is the potential energy of a
Eq. (56) dipole. By our assumption of statistical independence of di-
poles, the local fieldH,,.(t) can be expressed in terms of the
(&) - £(1)- dF_M:B&_}—e AF)- B 0Fe (64  Single-particle distribution function. We make the further as-
€ dt JF M IFu’ sumption that the local field can be approximated by the
Lorentz local fieldH (t) given by

(69

For the stationary process the term wgl(t) on the left-

hand side of this equation vanishes on account of (&), 4T

and the right-hand side is independent of time on account of HL(O=H() + Z-M(). (70
Eq. (62), so that then the equation can be expressed as

o Substituting Eq(68), we see that for a spherical sample the
Qu(& @)= —Dy (& w) (65) Lorentz fieldH (t) is identical with the applied fieltiy(t).

L Hence with this approximation for the local field, E§9)
reduces to Eq) with H replaced byH,, and all our earlier
results apply.

OF The identification of the Lorentz local field with the ap-

i (66) plied field holds only for a spherical sample. In ellipsoidal or
IFwm cylindrical geometry, the Maxwell field and the magnetiza-
_ tion are again uniform, but the Lorentz local field differs
It is evident thatDy (¢, w) provides a macroscopic approxi- from the applied field. Therefore in an applied rotating field
mation to the actual rate of dissipati®{ &, w), given by Eq.  the behavior of the magnetization will depend on the sample
(51). The expression agrees with that for the rate of entropyhape. Only for a spherical sample do we have a prediction
production derived from irreversible thermodynamics andfor the magnetization. This can be used to test the validity of

with the macroscopic rate of dissipation

. I,
Du(&,0) =B HFu)-B

Maxwell’'s equationg 18]. the theoretical assumptions in experiment or computer simu-
lation. In computer simulation, it is not necessary to use a
V1. INTERACTING DIPOLES IN SPHERICAL SAMPLE finite sample shape. One can employ periodic boundary con-

ditions and mimic the sample shape by the choice of periodic
Our study of the Smoluchowski equation applies to a di-Green’s functior{21].
lute system of dipoles in which interactions can be neglected.
The same calpulatlon can .be appll_ed to a sy;tem of mt_eract- VII. DISCUSSION
ing dipoles distributed uniformly in a spherical container,
provided correlations between dipoles are neglected, and the We have studied the nonlinear response of a dipolar sys-
average local field acting on a dipole is approximated by théem to a rotating field on the basis of Smoluchowski’s rota-
Lorentz local field. On the basis of these assumptions, wé&onal diffusion equation. For strong field the response differs
find that the single-particle distribution is given by the samemarkedly from that found by Shliomig3] from a macro-
expression as before. scopic relaxation equation. On the other hand, the effective
The neglect of correlations between dipoles implies thafield approximation of Martsenyukt al. [6] leads to results
the statistical behavior of the system is described by thegualitatively similar to those found from the Smoluchowski
single-particle distribution function. We consider a sphericalequation.
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For the case of an applied oscillating field, we have found As discussed at the end of Sec. VI, it would be desirable
elsewherd 11] that the frequency-dependence of the nonlin-to extend the calculation for interacting dipoles to cylindrical
ear response violates the Kramers-Kronig relations. Thoughgeometry. Also, it would be of interest to consider a super-
we have not demonstrated this in detail, the same is true fgoosition of two rotating fields, as studied by Gazesal.
the response to a rotating field. [22,23 experimentally and in linear response theory.
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