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Nonlinear response of a dipolar system with rotational diffusion to a rotating field

B. U. Felderhof*
Institut für Theoretische Physik A, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany

~Received 28 June 2002; published 19 November 2002!

The rotational diffusion equation for a dipole in the presence of a rotating field is solved by expansion of the
orientational distribution function in terms of spherical harmonics. For the stationary solution, the distribution
function rotates bodily in angular space. The magnitude of the average dipole moment and the lag angle are
studied as functions of field strength and frequency. A comparison is made with the nonlinear response
calculated from approximate macroscopic relaxation equations, proposed by Shliomis@Zh. Eksp. Teor. Fiz.61,
2611~1972! @Sov. Phys. JETP34, 1291~1972!## and by Martsenyuket al. @Zh. Eksp. Teor. Fiz.65, 834~1973!
@Sov. Phys. JETP38, 413 ~1974!##. Shliomis found that for sufficiently high field, the lag angle and the
absorption are multivalued functions of frequency. This is not the case for the exact solution of the rotational
diffusion equation presented here. The response of a macroscopic system of interacting dipoles is calculated in
a mean-field approximation for a spherical sample.
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I. INTRODUCTION

It was found experimentally by Moskowitz and Rosen
weig @1# that a rotating magnetic field acting on a ferroflu
can set the fluid into rotational motion. It was later esta
lished by Rosensweiget al. @2# that the motion of the fluid as
a whole is dominated by surface effects, and that the sens
rotational motion depends on the curvature of the menis
A ferrofluid filling its container and satisfying stick bounda
conditions will remain at rest, and only the magnetizati
will rotate, lagging the magnetic field by a certain angle.

In the following, we do not consider macroscopic motio
but rather the rotation of magnetization in a volume elem
in which the fluid is at rest. We study the dependence
amplitude and lag angle on field strength and frequency f
dilute suspension on the basis of the Smoluchowski equa
describing the rotational diffusion of individual dipoles.

The rotation of magnetization in a rotating magnetic fie
was investigated by Shliomis@3,4# on the basis of a macro
scopic relaxation equation for the magnetization, involvin
single relaxation time@5#. He showed that the lag angle an
the torque exerted on a particle are multivalued functions
frequency, if the field is sufficiently strong. We show in th
following that this is not the case for the solution of th
Smoluchowski equation. Both lag angle and torque
single-valued functions of frequency at any field streng
This suggests that the multivalued behavior found by Sh
mis is a peculiarity of his relaxation equation. Experimen
study of the behavior of the magnetization as a function
frequency would provide a critical test. We find that a seco
macroscopic relaxation equation, proposed by Martsen
et al. @6#, approximates the behavior found from the Smo
chowski equation quite well, and does not lead to multiv
ued behavior.

Our solution of the Smoluchowski equation is based
the observation that in a rotating magnetic field the station
orientational distribution function rotates bodily in angul
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space at the same frequency. The stationary distributio
expanded in spherical harmonics, and the equations for
coefficients are solved numerically after truncation at su
ciently high order. The expansion converges rapidly, even
strong field. Mathematically the solution is simpler than f
an oscillating field@7–11#, where a double expansion in Leg
endre polynomials and harmonics in time is required.
compare in detail with the macroscopic relaxation equat
of Martsenyuket al. @6#. We discuss entropy, free energ
and dissipation for both the Smoluchowski equation and
macroscopic relaxation equation.

Finally, we study the behavior of the magnetization
interacting dipoles filling a closed spherical container u
formly. With the assumption that the correlations betwe
the dipoles can be neglected, and that the local field ac
on a dipole can be approximated by the Lorentz local field
follows that the behavior of magnetization and correspo
ing torque is identical to that for a dilute system. It would
of interest to study this geometry experimentally or in co
puter simulation also for dense suspensions, particularly
view of Shliomis’ prediction of multivalued behavior. An
experiment of this type was suggested earlier by Henjes@12#.

All our considerations apply equally to electric and ma
netic dipoles. For definiteness, we use language and nota
corresponding to the magnetic case.

II. DIPOLES IN ROTATING FIELD

We consider a system of magnetic dipoles of dipole m
mentm5mu, whereu is a unit vector, driven by an applie
rotating magnetic field. We assume that the system
reached a stationary state in which in the volume elem
under consideration, the Maxwell magnetic field, and
magnetization rotate with frequencyv in the x-y plane. The
x,y components of the fieldH(t) are given by

Hx~ t !5H cosvt, Hy5H sinvt. ~1!

The magnetizationM(t) rotates at the same frequency, b
lags behind the field. Thus, puttingM(t)5nmF(t), wheren
is the number density, we may write

Fx~ t !5F cos~vt2a!, Fy5F sin~vt2a!. ~2!
©2002 The American Physical Society03-1
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Both the amplitudeF and the lag anglea depend on the
magnetic field strengthH and the frequencyv. The mean
torque exerted by the field on a dipole is in thez direction,
and in dimensionless units has the magnitude

T5Fj sina, ~3!

with dimensionless fieldj5mH/kT0, where k is Boltz-
mann’s constant andT0 is the temperature.

We analyze the situation, in particular, for a dilute syst
of dipoles subject to rotational Brownian motion due to
teraction with a heat bath at temperatureT0. The distribution
function of orientationsf (u,t) is assumed to satisfy th
Smoluchowski equation@13#

] f

]t
5DRL•@L f 1b~L«! f #, ~4!

whereDR is the rotational diffusion coefficient,L is the ro-
tation operator

L5u3
]

]u
, ~5!

andb51/kT0. The potential energy of a dipole with direc
tion u5(u,w) in the fieldH(t) is

«~u,t !52mH sinu cos~w2vt !. ~6!

It is natural to assume that the stationary solution of Eq.~4!
has the form

f ~u,t !5 f ~u,f!, ~7!

with phase angle

f5w2vt. ~8!

We find that the stationary solutionf (u,f) satisfies the equa
tion in two variables,

2vtR

] f

]f
5

1

sinu

]

]u S sinu
] f

]u D1
1

sin2u

]2f

]f2

1jF2 sinu cosf f 2cosu cosf
] f

]u

1
sinf

sinu

] f

]fG , ~9!

with relaxation timetR51/DR . By expansion in spherica
harmonics@14#, we can write the solution

f ~u,f!5 (
,50

`

(
m52,

,

C,mY,
m~u,f!. ~10!

The x,y components of the magnetization are then given
05150
y

Fx~ t !5A8p

3
@2C118 cosvt2C119 sinvt#,

Fy~ t !5A8p

3
@C119 cosvt2C118 sinvt#, ~11!

whereC118 ,C119 are the real and imaginary parts of the com
plex coefficientC11. As a consequence

F5A8p

3
uC11u, a5arctan

C119

C118
. ~12!

Hence the mean torque is given by

T ~j,v!52A8p

3
jC119 . ~13!

We solve Eq.~9! by noting that the last term on the righ
hand side can be expressed as the action of a linear ope
V on the distribution functionf (u,f) of the form

V f5jF2 sinu cosf2cosu Ly1sinu sinf
]

]fG f . ~14!

Using known properties of the spherical harmonics@15#, we
find that the action of the operatorV on the spherical har-
monic Y,

m is given by

VY,
m5

1

2
j@~,21!v,mY,21

m212~,21!w,mY,21
m111~,

12!w,11,m21Y,11
m212~,12!v,11,m11Y,11

m11#,

~15!

with coefficients

v,m5A~,1m!~,1m21!

~2,11!~2,21!
, w,m5v,,2m . ~16!

Substituting Eq.~10! into Eq. ~9!, we find therefore that the
coefficients$C,m% satisfy the set of coupled equations,

imvtRC,m5,~,11!C,m2
1

2
j@,v,11,m11C,11,m11

2,w,11,m21C,11,m211~,11!w,mC,21,m11

2~,11!v,mC,21,m21#. ~17!

By normalization of the distribution function, the coefficie
C00 is given by

C005
1

A4p
. ~18!

The remaining coefficientsC,m are determined from the se
of linear equations~17!. The equations can be solved b
truncation at sufficiently large,. For givenj and v, one
3-2
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finds that the coefficientsC,m tend to zero rapidly with in-
creasing,, so that it is not difficult to achieve convergenc

III. LIMITING CASES AND MACROSCOPIC
RELAXATION EQUATION

It is of interest to compare the exact solution obtain
above with the approximate solutions found in the limits
low frequency and weak field. We shall also compare
exact solution for the magnetization with that obtained in
so-called effective field approximation@6,16#.

In the limit of low frequency, the solution will be wel
approximated by a quasiequilibrium solution, correspond
to the thermal equilibrium in the instantaneous field. We c
this the adiabatic approximation. The corresponding distri
tion function is

f ad~u,f!5exp@j sinu cosf#/Z~j!, ~19!

with normalization factor

Z~j!5
4p sinhj

j
. ~20!

The corresponding magnetization components are

Fx~ t !5L~j!cosvt, Fy~ t !5L~j!sinvt, ~21!

whereL(j) is the Langevin function

L~j!5cothj2
1

j
. ~22!

Thus for the adiabatic solution, the amplitudeF takes the
equilibrium valueL(j), as if the field were static, and the la
anglea vanishes.

For weak field, Eq.~9! can be solved by perturbation ex
pansion in powers ofj. Thus we put

f ~u,f!5 f 01 f 11 f 21•••, ~23!

where the subscript denotes the order inj. From Eq.~9!, one
finds

f 05
1

4p
,

f 1~u,f!5
1

4p
j cosa1 sinu cos~f1a1!, ~24!

with phase angle

a15arctanS v

2DR
D . ~25!

The corresponding amplitudeF is to first order inj,

Fw5
1

3
j cosa1 . ~26!
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It turns out that Eq.~24! provides a good approximation a
high frequency. At high frequency, the field is weak effe
tively, since the dipoles cannot follow the field.

In a constant fieldj, the time-independent equilibrium
distribution is

f eq~x!5exp~jx!/Z~j!. ~27!

The corresponding equilibrium magnetization is

Feq~j!5L~j!. ~28!

In the effective field approximation@6,16#, it is assumed that
the distribution function has the equilibrium form

f e~u,w,t !5exp@u•je~ t !#/Z~je! ~29!

at all times with fieldje(t) in the direction of the magneti
zationM(t) with magnitudeje(t) given byF5L(je), as in
Eq. ~28!. The magnetization itself is assumed to follow fro
a macroscopic relaxation equation. The latter is derived a
moment equation of Eq.~4!, on the assumption that the dis
tribution has the form~29!. We denote the approximate re
duced magnetization byFM(t) and the corresponding effec
tive field by jeM(t). Martsenyuk et al. @6# derived the
macroscopic equation

dFM

dt
52DRF2

L~jeM!

jeM
~jeM2j!1

3L~jeM!2jeM

jeM
3

jeM

3~j3jeM!G . ~30!

As we shall see, the macroscopic relaxation equation p
vides quite a good approximation to the actual magnet
tion.

By substitution of Eqs.~1! and~2!, with F replaced byFM
anda replaced byaM , into Eq.~30! one finds that the equa
tion is satisfied providedjeM and aM satisfy the pair of
equations

jeM5j cosaM ,

tanaM5vtR

L~jeM!

jeM2L~jeM!
. ~31!

It is easily checked that these equations are consistent
the behavior found above for low frequency and for we
field. It is of interest to compare the behavior predicted
Eq. ~31! with that found from Shliomis’ relaxation equatio
@3,4#. We denote the corresponding reduced magnetizatio
FS(t). Shliomis’ relaxation equation reads in present no
tion as

dFS

dt
5VpS3FS22DRFFS2

L~j!

j
jG , ~32!

with angular velocity vectorVpS given by

VpS5DRTS , ~33!
3-3
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with mean torqueTS5FS(t)3j(t) in dimensionless units
The solution is of the form~2! with amplitudeFS and lag
angleaS given by the pair of equations

FS5L~j!cosaS ,

tanaS5
1

2
~vtR2jFS sinaS!. ~34!

With the abbreviationsxS5tanaS and PS5 1
2 jL(j), this

leads to the cubic equation

xS
32

1

2
vtRxS

21~PS11!xS2
1

2
vtR50. ~35!

In Fig. 1, we plot tanaS(j,v) as a function ofvtR for the
values $01,2,5,8,12,16% of PS(j). This corresponds ap
proximately to the values$01,5,11,17,25,33% of the fieldj.
In Fig. 2, we plot the ratioTS(j,v)/vtR as a function of
vtR for the same values ofPS(j). These functions are mul
tivalued for PS(j).8. In Fig. 3, we plot tana(j,v) and
tanaM(j,v) as functions ofvtR for the same values o
PS(j) as previously. In Fig. 4, we plot the ratio
T(j,v)/vtR and TM(j,v)/vtR . It is evident from Figs. 3
and 4 that these functions are single valued. Figure 3 sh
that the values of tana(j,v) are given only approximately
by the macroscopic equation. It is shown in Fig. 4 that
values of the torque are reproduced much better by the
proximate equation.

FIG. 1. Plot of tanaS(j,v), following from Shliomis’ equations
~34! and ~35!, as a function of vtR for values
$01,2,5,8,12,16% of PS(j) ~from left to right!.

FIG. 2. Plot of the ratioTS(j,v)/vtR , following from Shlio-
mis’ equations~34! and ~35!, as a function ofvtR for values
$2,5,8,12,16% of PS(j) ~from left to right!.
05150
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It is also of interest to compare the exact distribution w
the one assumed in the effective field approximation. T
distibution is given by a peak in the (u,f) plane centered
aboutu5p/2 andf052a(j,v). In Fig. 5, we compare the
function f (p/2,f) with the function f eM(p/2,f) corre-
sponding to the field jeM(j,v) for j520 and v
518.689DR . In Fig. 6, we compare the functionf (u,f0)
with the function f eM(u,f0) for the same values of (j,v).
The plot in Fig. 5 shows that the distribution is distorte
considerably in thef direction compared with the distribu
tion of the effective field approximation.

IV. FIRST HARMONIC RESPONSE, ABSORPTION,
AND TORQUE

A quantity of prime interest in the nonlinear response
the magnetization is the amplitude of the first harmonic,
fined by

P~j,v!5jvE
0

T

@Fx~ t !cosvt1Fy~ t !sinvt#dt. ~36!

From Eq.~2!, we find

P~j,v!52pj F cosa. ~37!

From Eq.~25! and ~26! we find for weak field

FIG. 3. Plot of the exact values of tana(j,v) ~solid curves!,
and of tanaM(j,v), following from Eq. ~31!, ~dashed curves!, as
functions ofvtR for values$01,2,5,8,12,16% of PS(j) ~from left to
right!.

FIG. 4. Plot of the exact values ofT (j,v)/vtR ~solid curves!,
and ofTM(j,v)/vtR , following from Eq.~31!, ~dashed curves!, as
functions of vtR for values$2,5,8,12,16% of PS(j) ~from left to
right!.
3-4
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NONLINEAR RESPONSE OF A DIPOLAR SYSTEM WITH . . . PHYSICAL REVIEW E66, 051503 ~2002!
Pw~j,v!5
2p

3
j2 cos2a15

2p

3
j2

4

41v2tR
2

. ~38!

In the zero frequency limit, one finds from Eq.~21!

P~j,0!52pjL~j!. ~39!

This differs significantly from the expression for oscillatin
field @11#. For smallj, the expression reduces toPw(j,0)
52pj2/3, twice that for an oscillating field.

A second quantity of interest is the absorption, defined
the work done by the field in a periodT52p/v. In dimen-
sionless units,

Q~j,v!5jE
0

TFdFx

dt
cosvt1

dFy

dt
sinvt Gdt. ~40!

It follows from Eq. ~2! that the exact absorption is

Q~j,v!52pj F sina. ~41!

To second order inj, the absorption is

Qw~j,v!5
2p

3
j2 sina1 cosa15

2p

3
j2

2vtR

41v2tR
2

.

~42!

FIG. 5. Plot of the stationary distribution functionf (p/2,f) in
the rotating frame forj520 andv518.689DR ~solid curve!, com-
pared with the distributionf eM(p/2,f) of the effective field ap-
proximation~dashed curve!.

FIG. 6. Plot of the stationary distribution functionf (u,f0) for
f052a(j,v) in the rotating frame forj520 andv518.689DR

~solid curve!, compared with the distributionf eM(u,f0M) for
f0M52aM(j,v) of the effective field approximation~dashed
curve!.
05150
s

We can compare with the absorptionQS(j,v) calculated
from the approximate magnetizationFS(t), and similarly the
absorptionQM(j,v) calculated fromFM(t).

It follows from Eqs. ~3! and ~41! that absorption and
torque are related by

Q52pT. ~43!

In other words, the work done per second equalsvT. Note
that here the frequencyv, rather than the ‘‘angular velocity’
Vp5DRT, occurs. It has been suggested@17# in connection
with Shliomis’ relaxation equation to callVpT the coherent
rate of dissipation, and the remainder (v2Vp)T the incoher-
ent rate of dissipation, but in the framework of the Smo
chowski equation there is no point in doing so.

The behavior of the quantitiesP(j,v) and Q(j,v) as
functions ofv is qualitatively similar to that for oscillating
field @11#. The absorptionQw(j,v) calculated from the lin-
earized theory shows a resonance when plotted as a fun
of log10vtR with maximum atvmw52/tR , corresponding to
Debye relaxation timetD51/2DR . In Fig. 7, we plot the
reduced first harmonic responseP(j,v)/P(j,0) as a func-
tion of log10vtR for j520, as well as the reduced absor
tion Q(j,v)/P(j,0). We compare with the quantitie
Pw(j,v)/Pw(j,0) andQw(j,v)/Pw(j,0) valid in the weak
field limit. The latter are related by Kramers-Kronig rel
tions. The plot shows a significant qualitative difference
strong field. We also plot the corresponding quantities cal
lated from the macroscopic equation. The approxim
theory performs quite well. At the maximum atvm
518.869DR , the exact value isQ(20,vm)597.044, whereas
the approximate value isQM(20,vm)5100.221. At high fre-
quency both curves tend to the expression for weak fi
~4.7!. This expression has its maximumQw(20,2DR)
5418.88 atvmw52DR .

V. ENTROPY, FREE ENERGY, AND DISSIPATION

The entropy per particle in a state characterized by dis
bution f (u,t) can be calculated from Boltzmann’s expressi

FIG. 7. Plot of the reduced functionsP(j,v)/P(j,0) and
Q(j,v)/P(j,0) as functions of log10 vtR for j520 ~solid curves!,
compared with the quantities Pw(j,v)/Pw(j,0) and
Qw(j,v)/Pw(j,0) valid in the weak field limit~dotted curves!, as
well as with the quantitiesPM(j,v)/P(j,0) andQM(j,v)/P(j,0)
calculated from the effective field approximation~long dashes!.
3-5
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S52kE f ~u,t !ln f ~u,t !du. ~44!

The corresponding free energy per particle is

F5U2T0S, ~45!

whereU is the mean potential energy.
In the stationary state, the distribution function rota

with constant angular velocityv. Hence in the stationary
state the free energy, the mean potential energy, and the
tropy are constant. The distribution function differs from t
equilibrium form, and there is a constant rate of dissipati
In the stationary state, the mean potential energy is

U52kT0jF cosa. ~46!

By use of Eq.~37!, we find the relation

U52
kT0

2p
P~j,v!. ~47!

The entropy must be calculated from Eq.~44! after substitu-
tion of Eq. ~10!.

The free energy is a functionalF @ f # of the distribution
function. For general distributionf (u,t), its rate of change is

dF
dt

5E @«~u,t !1kT0 ln f #
] f

]t
du1E ]«

]t
f du. ~48!

Substituting Eq.~4! and performing an integration by part
we transform this to

dF
dt

52kT0DRE F ]

]u
~ ln f 2j~ t !•u!G2

f ~u,t !du

2mF~ t !•
dH

dt
. ~49!

In the stationary state, the left-hand side vanishes, and
second term on the right is independent of time. Hence
first term on the right also does not depend on time, and
find the relation

Ḋ~j,v!5
v

2p
Q~j,v!, ~50!

whereḊ(j,v) is the rate of dissipation given by

Ḋ~j,v!5DRE F ]

]u8
~ ln f 2j sinu cosf!G 2

f ~u8!du8,

~51!

whereu85(u,f) is the direction of the dipole in the rotatin
frame. Clearly the integrand is positive. Hence the rate
dissipation is positive. The relation~50! shows that the rate
of dissipation is calculated conveniently from the absorpti
i.e., from the work done on the system.
05150
s
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For a distribution of the exponential form~29!, a so-called
e distribution, the free energy becomes a functionalFe@F# of
the magnetizationF, or alternatively of the effective fieldje
related toF by Eq.~28!. By substitution of Eq.~29! into Eq.
~44!, one finds for the corresponding entropy

Se~F!5k ln Z~je!2k je•F. ~52!

Hence the free energy is

bFe~F,t !5~je2j~ t !!•F2 ln Z~je!. ~53!

We see by use of the relation

F5
] ln Z~je!

]je
, ~54!

equivalent to Eq.~28!, that je is the thermodynamic force
conjugate toF,

je52
1

k

]Se~F !

]F
. ~55!

The entropySe(F) depends only on the magnitudeF, and
Se(0)5k ln 4p. From Eqs.~52! and ~53! we find

je2j~ t !5
]bFe

]F
. ~56!

If at time t the distribution has the exponential form a
sumed in Eq.~29!, then the rate of change of the magnetiz
tion at that time is

dF

dt U
e

5E u
] f e

]t
du. ~57!

Substituting from Eq.~4!, one finds

dF

dt U
e

5DR„j~ t !2je…•^12uu&je
. ~58!

By use of Eq.~56!, we can write

dF

dt U
e

52g~F!•b
]Fe

]F
~59!

with mobility tensor

g~F!5g i~F !F̂F̂1g'~F !~12F̂F̂!, ~60!

with Onsager coefficients

g i~F !52DR

L„je~F !…

je~F !
, g'~F !5DR

je~F !2L„je~F !…

je~F !
.

~61!

One obtains the macroscopic relaxation equation Eq.~30! by
postulating that
3-6
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NONLINEAR RESPONSE OF A DIPOLAR SYSTEM WITH . . . PHYSICAL REVIEW E66, 051503 ~2002!
dFM

dt
52g~FM !•b

]Fe

]FM
~62!

holds at all times. The above derivation throws new light
the macroscopic equation~30! of Martsenyuket al. @6#, and
shows how this should be viewed in the framework of ir
versible thermodynamics. The inverse expressions
t i(F)51/g i(F) and t'(F)51/g'(F) were derived by
Martsenyuket al. @6# in linear response theory. The mobilit
tensorg(F) is symmetric, positive definite, and has trace

g i~F !12g'~F !52DR . ~63!

At vanishing magnetization, both coefficientsg i(0),g'(0)
equal 2

3 DR . The longitudinal coefficientg i(F) decreases to
zero with increasing magnetization. At the same time
transverse coefficientg'(F) increases to its maximum valu
DR . Thus at vanishing magnetization the mobility tensor
isotropic, and it becomes more and more anisotropic w
increasing magnetization.

Multiplying Eq. ~60! by j(t)2je(t), we obtain by use of
Eq. ~56!

„j~ t !2je~ t !…•
dFM

dt
5b

]Fe

]FM
•g~FM !•b

]Fe

]FM
. ~64!

For the stationary process the term withje(t) on the left-
hand side of this equation vanishes on account of Eq.~55!,
and the right-hand side is independent of time on accoun
Eq. ~62!, so that then the equation can be expressed as

QM~j,v!5
2p

v
ḊM~j,v! ~65!

with the macroscopic rate of dissipation

ḊM~j,v!5b
]Fe

]FM
•g~FM !•b

]Fe

]FM
. ~66!

It is evident thatḊM(j,v) provides a macroscopic approx
mation to the actual rate of dissipationḊ(j,v), given by Eq.
~51!. The expression agrees with that for the rate of entro
production derived from irreversible thermodynamics a
Maxwell’s equations@18#.

VI. INTERACTING DIPOLES IN SPHERICAL SAMPLE

Our study of the Smoluchowski equation applies to a
lute system of dipoles in which interactions can be neglec
The same calculation can be applied to a system of inter
ing dipoles distributed uniformly in a spherical contain
provided correlations between dipoles are neglected, and
average local field acting on a dipole is approximated by
Lorentz local field. On the basis of these assumptions,
find that the single-particle distribution is given by the sa
expression as before.

The neglect of correlations between dipoles implies t
the statistical behavior of the system is described by
single-particle distribution function. We consider a spheri
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sample placed in a uniform applied rotating field

H0~ t !5H0@ex cosvt1ey sinvt#. ~67!

The field induces a magnetizationM(t) and a Maxwell field
H(t), which are uniform throughout the sample. It follow
from Maxwell’s equations of magnetostatics that the Ma
well field inside the sphere is given by

H~ t !5H0~ t !2
4p

3
M~ t !, ~68!

where the last term is the demagnetizing field, in Gauss
units. The distribution function will rotate uniformly abou
the z axis. Quite generally, it can be assumed to satisfy
equation@19,20#

] f

]t
5DRL•@L f 1b~L« loc! f #, ~69!

where « loc(t)52mu•H loc(t) is the potential energy of a
dipole. By our assumption of statistical independence of
poles, the local fieldH loc(t) can be expressed in terms of th
single-particle distribution function. We make the further a
sumption that the local field can be approximated by
Lorentz local fieldHL(t) given by

HL~ t !5H~ t !1
4p

3
M~ t !. ~70!

Substituting Eq.~68!, we see that for a spherical sample t
Lorentz fieldHL(t) is identical with the applied fieldH0(t).
Hence with this approximation for the local field, Eq.~69!
reduces to Eq.~4! with H replaced byH0, and all our earlier
results apply.

The identification of the Lorentz local field with the ap
plied field holds only for a spherical sample. In ellipsoidal
cylindrical geometry, the Maxwell field and the magnetiz
tion are again uniform, but the Lorentz local field diffe
from the applied field. Therefore in an applied rotating fie
the behavior of the magnetization will depend on the sam
shape. Only for a spherical sample do we have a predic
for the magnetization. This can be used to test the validity
the theoretical assumptions in experiment or computer si
lation. In computer simulation, it is not necessary to use
finite sample shape. One can employ periodic boundary c
ditions and mimic the sample shape by the choice of perio
Green’s function@21#.

VII. DISCUSSION

We have studied the nonlinear response of a dipolar s
tem to a rotating field on the basis of Smoluchowski’s ro
tional diffusion equation. For strong field the response diff
markedly from that found by Shliomis@3# from a macro-
scopic relaxation equation. On the other hand, the effec
field approximation of Martsenyuket al. @6# leads to results
qualitatively similar to those found from the Smoluchows
equation.
3-7
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For the case of an applied oscillating field, we have fou
elsewhere@11# that the frequency-dependence of the nonl
ear response violates the Kramers-Kronig relations. Tho
we have not demonstrated this in detail, the same is true
the response to a rotating field.
ag
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As discussed at the end of Sec. VI, it would be desira
to extend the calculation for interacting dipoles to cylindric
geometry. Also, it would be of interest to consider a sup
position of two rotating fields, as studied by Gazeauet al.
@22,23# experimentally and in linear response theory.
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